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a  b  s  t  r  a  c  t

Adult  neurogenesis  represents  a striking  example  of  structural  plasticity  in  the mature  brain.  Research
on adult  mammalian  neurogenesis  today  focuses  almost  exclusively  on  two  areas:  the subgranular  zone
(SGZ)  in  the  dentate  gyrus  of the  hippocampus,  and  the  subventricular  zone  (SVZ)  of  the  lateral  ventricles.
Numerous  studies,  however,  have  also  reported  adult  neurogenesis  in the  hypothalamus,  a  brain  structure
that serves  as a central  homeostatic  regulator  of  numerous  physiological  and  behavioral  functions,  such
as feeding,  metabolism,  body  temperature,  thirst,  fatigue,  aggression,  sleep,  circadian  rhythms,  and  sexual
behavior.  Recent  studies  on hypothalamic  neurogenesis  have  identified  a progenitor  population  within
a  dedicated  hypothalamic  neurogenic  zone.  Furthermore,  adult  born  hypothalamic  neurons  appear  to
play  a role  in the  regulation  of  metabolism,  weight,  and  energy  balance.  It remains  to  be  seen  what
dult
unction
anycytes
evelopment
etabolism

nergy balance

other  functional  roles  adult  hypothalamic  neurogenesis  may  play.  This  review  summarizes  studies  on  the
identification  and  characterization  of  neural  stem/progenitor  cells  in  the  mammalian  hypothalamus,  in
what contexts  these  stem/progenitor  cells  engage  in  neurogenesis,  and  potential  functions  of postnatally
generated  hypothalamic  neurons.

©  2012  Published  by  Elsevier  Ltd  on behalf  of  ISDN.
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. Introduction

“Once development was ended, the fonts of growth and regenera-
tion of the axons and dendrites dried up irrevocably. In the adult
centers, the nerve paths are something fixed, and immutable: every-
thing may die, nothing may be regenerated.

-Santiago Ramón y Cajal, 1928

For more than a century, medical science clung to a fundamen-
al dogma: the adult brain is a static structure, and human beings
re born with all the brain cells they will ever have. Over the last 15
ears, however, studies have shown that neurogenesis, the genera-
ion of newborn neurons, occurs in the postnatal and adult human
rain (Eriksson et al., 1998; Curtis et al., 2007; Quinones-Hinojosa
nd Chaichana, 2007). Understanding the functional consequences
f this plasticity has been of great interest to the neuroscience
eld, and a variety of animal model studies have informed us that
any of these newborn neurons survive and functionally integrate

hemselves into the working brain.
Anatomical evidence for ongoing neurogenesis in the adult

ammalian central nervous system (CNS) was first described by
ltman and Das (1965).  However, the functional relevance of

hese findings was not clear at the time, and several decades
assed before this finding aroused wide interest. It was  not until
he work of Nottebohm and colleagues in the mid-1980s, which
emonstrated that newborn neurons in the adult songbird CNS
ere auditory-responsive, that the capacity of newborn neurons

o functionally integrate into local neural circuitry was broadly
ccepted (Paton and Nottebohm, 1984; Alvarez-Buylla et al., 1988).
ethodological advancements in electron microscopy techniques

evealed that adult-generated mammalian hippocampal neurons
ould survive for an extended period and receive synaptic inputs
Kaplan and Hinds, 1977; Kaplan and Bell, 1984), further sug-
esting that neurogenesis could modify neural circuits. Advances
n immunohistochemistry combined with 3H-thymidine-labeling
emonstrated that adult neurogenesis was a robust phenomenon
Cameron et al., 1993). Immunohistochemical detection of neu-
onal markers and the introduction of bromodeoxyuridine (BrdU), a
ynthetic thymidine analog lineage tracer of DNA replication (Kuhn
t al., 1996), further propelled the understanding of adult neuroge-
esis in the mammalian CNS by allowing for broader visualization
nd stereological quantification of newborn neurons (Ming and
ong, 2005).

Research on adult mammalian neurogenesis today focuses
lmost exclusively on two areas: the subgranular zone (SGZ) in
he dentate gyrus of the hippocampus, where new dentate granule
ells are generated, and the subventricular zone (SVZ) of the lateral
entricles, where new neurons are generated and migrate through
he rostral migratory stream to the olfactory bulb (Ming and Song,
005, 2011; Lie et al., 2004; Gould, 2007). However, neurogene-
is has been reported in multiple brain regions outside the SGZ
nd SVZ (Gould, 2007), such as the basal forebrain (Palmer et al.,
995), striatum (Pencea et al., 2001; Reynolds and Weiss, 1992),
mygdala (Rivers et al., 2008), substantia nigra (Lie et al., 2002),
ubcortical white matter (Nunes et al., 2003), and more recently
he hypothalamus (Kokoeva et al., 2005; Migaud et al., 2010; Lee
t al., 2012).

These findings, however, have been met  with relatively sub-
ued interest from the field, as the absolute levels of neurogenesis
eported in vivo are substantially lower than that observed in the
VZ and SGZ. An important qualification to this assumption is that
he ability to detect ongoing neurogenesis outside the highly vascu-
Please cite this article in press as: Lee, D.A., Blackshaw, S., Functional im
brain. Int. J. Dev. Neurosci. (2012), http://dx.doi.org/10.1016/j.ijdevne

arized SVZ and SGZ may  be limited by the inadequacy of traditional
ethods used to reveal new-born neurons. Recent methods, such

s intracerebroventricular (icv) delivery of BrdU, demonstrate that
ew cells are born continuously and in substantial numbers in the
 PRESS
uroscience xxx (2012) xxx–xxx

adult murine hypothalamus and that many of these cells appear to 

differentiate into neurons (Kokoeva et al., 2007). Additionally, very 

small numbers of neurons in classically neurogenic regions such as 

the hippocampus have been found to be critical to the regulation 

of memory formation (Han et al., 2009). Thus, even if levels of neu- 

rogenesis are low, this does not mean they are not physiologically 

important. 

While these studies on neurogenesis outside the SVZ and 

SGZ represent only a small fraction of the published studies on 

adult neurogenesis, the prospect of hypothalamic neurogenesis has 

aroused substantial interest due to this region’s role as a master 

regulator of neuroendocrine function. Furthermore, this region also 

serves as a central homeostatic regulator of numerous physiological 

and behavioral functions, such as feeding, metabolism, body tem- 

perature, thirst, fatigue, aggression, sleep, circadian rhythms, and 

sexual behaviors. It is also well established that various hypotha-
lamic neuronal subtypes display high levels of morphological
plasticity, suggesting that newly generated neurons may  integrate
quite readily into existing hypothalamic neural circuitry (Theodosis 

et al., 2004, 2006; Prevot et al., 2010).
Given the critical role that hypothalamic neural circuitry plays 

in maintaining physiological homeostasis, functional integration 

of newborn neurons and/or their release of hormones/peptides 

may  result in disproportionately larger effects in physiology and 

behavior relative to other brain regions. This review summa- 

rizes studies on the identification and characterization of neural 

stem/progenitor cells in the mammalian hypothalamus, in what 

contexts these stem/progenitor cells engage in neurogenesis, and 

potential functions of postnatally generated hypothalamic neu- 

rons. 

2. Postnatal and adult hypothalamic neurogenesis 

Among the first studies describing observations of hypotha- 

lamic neurogenesis, were a series of experiments in which 

co-intraventricular infusion of brain derived neurotrophic factor 

(BDNF) and the proliferative lineage tracer BrdU led to increased 

levels of BrdU labeling, not only in the SGZ and SVZ, but also in 

the hypothalamus, striatum, and other forebrain regions (Pencea 

et al., 2001). Within the hypothalamic parenchyma, these BrdU 

labeled cells were found in a widely scattered pattern with the 

density of labeled cells declining as a function of distance from 

the ventricular wall (Pencea et al., 2001). Notably, the fraction of 

BrdU+ cells co-labeled with �III-tubulin, a neuron-specific marker, 

was substantially higher in the hypothalamus (∼42%) than near 

the SVZ (∼27%). Subsequent studies used BrdU incorporation 

to provide evidence for FGF and CNTF-induced neurogenesis in 

the adult hypothalamus (Xu et al., 2005; Kokoeva et al., 2005; 

Perez-Martin et al., 2010). While these studies suggested that 

adult neurogenesis, as measured by BrdU incorporation, can occur 

in the mammalian hypothalamus, the non-physiological levels 

of growth factors used in these experiments made it unclear 

to what degree adult neurogenesis occurred in basal condi- 

tions. 

Studies into physiological levels of hypothalamic neurogene- 

sis have been hampered by the lackluster observation of newborn 

neurons with a single peripheral pulse of BrdU, as generally car- 

ried out in studies of neurogenesis in the SVZ and SGZ. This may  

be due to a number of reasons including, but not limited to, per- 

meability of blood–brain barrier, the existence of relatively slow 

dividing progenitors in the hypothalamus, and a more limited
plications of hypothalamic neurogenesis in the adult mammalian
u.2012.07.003

temporal neurogenic window in the hypothalamus versus other 163

neurogenic niches in the brain. Firstly, parenchymal exposure to 164

circulating levels of BrdU following a single peripheral pulse is 165

most likely to be exceeding low compared to ventricular-associated 166

dx.doi.org/10.1016/j.ijdevneu.2012.07.003
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Fig. 1. The adult hypothalamic ventricular zone expresses stem and neural progenitor-specific markers. In situ hybridization of the adult hypothalamus reveals that the
hypothalamic ventricular zone (HVZ) of the third ventricle (3V) expresses numerous neural stem and progenitor specific markers. (a) Coronal diagram of the mediobasal
h (d) Nt
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ypothalamus. Expression of the neural progenitor markers (b) Axin, (c) CD63, and 

rcN  = arcuate nucleus. 8–12 week old female mice. Scale bar = 50 �m.

rain regions. The observations of higher levels of BrdU incorpo-
ation near circumventricular organs (Bennett et al., 2009) and
he SVZ/SGZ suggest these regions of be much more prolifera-
ive, or alternatively, more accessible to permeability by BrdU.
entral administration or multiple peripheral BrdU injections, as
pposed to a single peripheral dose administration are likely to
e required in order for robust detection of hypothalamic neu-
ogenesis (Kokoeva et al., 2007). Secondly, BrdU is incorporated
uring DNA synthesis. Single peripheral BrdU injections have a
hort half-life, and if hypothalamic neural progenitors have longer
ell cycles compared to SVZ/SGZ derived progenitors, this may
ive the incorrect appearance of no/low levels of hypothalamic
eurogenesis. Lastly, the temporal window in which hypothala-
ic  neurogenesis occurs may  be much more narrowly limited

han in other neurogenic regions, which may  be why hypothala-
ic  neurogenesis is not a widely reported observation. The ability

o develop robust tools to detect all types of proliferating (slow
s. fast dividing) neural progenitors will expand the realm of
bservation of adult neurogenesis in regions beyond the SVZ and
GZ. Indeed, hippocampal neurogenesis was ignored for decades
ecause the technology to validate this phenomenon was not up
o par until years after its initial observation. New tools for study-
ng proliferating neural progenitors will open up many new studies
nto previously under-characterized candidate progenitor popula-
ions.

Subsequent studies, however, which deliver BrdU using a series
f peripheral injections or intracerebral cannulation, suggested that
eurogenesis does occur within the adult hypothalamus under
aseline conditions (Lee et al., 2012; Kokoeva et al., 2007; Ahmed
t al., 2008). The distribution of hypothalamic neurogenesis differs
ubstantially between hypothalamic regions, with the hypothala-
ic  median eminence (ME) showing 5-fold greater levels of relative

eurogenesis than any other area (Lee et al., 2012). As with postna-
al neurogenesis in the SGZ, the rate of ME  neurogenesis decreases
harply with age (Lee et al., 2012). Interestingly, diet alters neuro-
enesis in different hypothalamic sub-regions. High-fat diet (HFD)
ubstantially enhances adult neurogenesis in the hypothalamic
E  (Lee et al., 2012), while inhibiting neurogenesis in the adja-

ent arcuate nucleus (McNay et al., 2011), suggesting that diet can
lay a role in altering energy balance circuits well into adulthood.
his may  be accomplished by selective generation of specific neu-
onal subtypes that promote or inhibit feeding (Lee et al., 2012),
ombined with elimination of neurons with opposing functions
y selective apoptosis (McNay et al., 2011). The ability to sustain
pposing regulatory mechanisms to maintain energy balance is
ssential for survival, and regulating these opposing processes of
Please cite this article in press as: Lee, D.A., Blackshaw, S., Functional im
brain. Int. J. Dev. Neurosci. (2012), http://dx.doi.org/10.1016/j.ijdevne

eurogenesis and apoptosis may  serve as an important mecha-
ism to alter the set points of homeostatic regulatory circuitry in
he hypothalamus in response to physiological and environmental
nsults (Pierce and Xu, 2010).
rk2-T.1 are enriched in the hypothalamic ventricular zone. ME = median eminence.

3. Hypothalamic stem/progenitor cells 

The identity and location of adult hypothalamic stem/progenitor 

cells still requires further clarification. The presence of a hypothala- 

mic  “germinal matrix” was first described by Altman and Das (1965) 

in the postnatal rat, in which an active proliferative state, similar to
that observed in the SVZ and SGZ, existed in the ependymal layer of 

the third ventricle wall past one month of age. Micrographs of these 

observations were not published, however, and subsequent studies 

using 3H-thymidine to label dividing cells did not report significant 

levels of proliferation in the ependymal layer of the third ventri- 

cle (Alvarez-Buylla et al., 1990). Another study suggested adult 

born neurons could be derived from a hypothalamic subependy- 

mal  layer cell population (Perez-Martin et al., 2010). Conversely, in 

many of the recent studies claiming to report adult hypothalamic 

neurogenesis, it appears that most BrdU+ cells are dispersed in the 

parenchyma rather than concentrated along the third ventricular 

wall (Migaud et al., 2010; Pencea et al., 2001; Kokoeva et al., 2005). 

This distribution of BrdU+ cells is unlike any other previously 

reported pattern of embryonic or adult neurogenesis in vertebrates, 

where neurogenesis occurs in a clearly defined zone that usu- 

ally borders the cerebral ventricles. This proliferating parenchymal 

cell population may  represent additional progenitor populations. 

Future studies employing genetic fate mapping to prospectively 

lineage trace these hypothalamic parenchymal cells will reveal 

whether these cell populations may  exist as a type of quiescence 

or slowly dividing neural progenitor population. Potential genetic 

tools to study this population may  include using a hGFAPCreERT2

(Ganat et al., 2006), PDGFR�-CreERT2 (Rivers et al., 2008), GLAST- 

CreERT2 (de Melo et al., 2012), or alternative inducible Cre lines to 

label putative parenchymal progenitor cell candidates. This wide 

and fairly even distribution resembles that seen for oligoden- 

drocyte precursor cells (Belachew et al., 2003), suggesting that 

newborn neurons in the hypothalamus could be derived from these 

cell types, although subsequent cell-fate lineage analysis revealed 

that this was not the case (Kang et al., 2010; Lee et al., 2012). Details 

describing the distribution of BrdU+ cells in the hypothalamus fol- 

lowing various BrdU administration protocols are tabulated in a 

review by Migaud et al. (2010).  

In addition to a hypothalamic parenchymal progenitor pop- 

ulation, in vitro neurospheres derived from the hypothalamic 

juxta-ventricular zone (mixed ependymal, subependymal, and 

parenchymal cell populations), suggested that cells with neural 

stem/progenitor potential resided in the vicinity of the third ven- 

tricle (Markakis et al., 2004; Xu et al., 2005; Bennett et al., 2009). 

Unfortunately, the failure to use prospective in vivo cell fate- 
plications of hypothalamic neurogenesis in the adult mammalian
u.2012.07.003

mapping approaches in these studies, such as retroviral labeling 261

or Cre/lox based genetic labeling, makes it difficult to draw firm 262

conclusions about the identity or location of any putative hypotha- 263

lamic stem/progenitor cell population. The use of fate mapping 264

dx.doi.org/10.1016/j.ijdevneu.2012.07.003
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Table 1
The adult hypothalamic ventricular zone expresses stem and neural progenitor-specific markers. A large-scale in situ hybridization screen of the hypothalamus reveals that
the  adult hypothalamic ventricular zone (HVZ) of the third ventricle (3V) expresses numerous neural stem and progenitor specific markers. Above are genes that enriched
in  tanycytes, tanycytes and a neuronal subset, tanycytes and glial subset, as well as tanycytes and ependymal cells. Data collated from in situ hybridization performed on
coronal brain sections from 6 to 12 week old female mice.

Tanycyte enriched Tanycytes and neuronal subset Tanycytes and glial subset Tanycytes and ependymal cells
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also been extensive interest in possible roles for hypothalamic neu- 349

rogenesis in weight homeostasis. The first such studies involved 350

the use of CNTF as a potential therapeutic treatment to induced 351

weight loss (Kokoeva et al., 2005). Co-administration of CNTF and 352

Fig. 2. Tanycytes of the hypothalamic median eminence are neural progenitors. (a)
�2  tanycytes have been directly shown to proliferate substantially at the floor of the
Rx, Nestin, Hes1, Hes5, Notch1, Notch 2, Fzd5,
Dirc, CD63, Sox9, Ntrk2-T.1, Thrsp

Gpr50, Lhx2, Six3, Nfia, Cited1
Nfix, Igfbp4, Gpr98

echniques to supplement BrdU incorporation studies to firmly
stablish the existence of ongoing neurogenesis is particularly
mportant given the fact that BrdU can in some circumstances be
ncorporated into postmitotic neurons (Yang et al., 2001; Kuan
t al., 2004; Breunig et al., 2007).

A recent large scale in situ hybridization screen revealed that the
dult hypothalamic ventricular zone (HVZ) is enriched for neural
tem and progenitor specific-genes (Fig. 1; Table 1; Lee et al., 2012;
himogori et al., 2010), suggesting that the adult HVZ may  serve as a
eservoir of multipotent neural progenitors. In postnatal and adult
odent, this region is primarily composed of terminally differenti-
ted multi-ciliated ependymal cells and specialized radial glia-like
ells known as tanycytes (Horstmann, 1954), with the ventral HVZ
omposed exclusively of tanycytes (Mathew, 2008; Rodriguez et al.,
005).

Tanycytes are divided into four distinct subclasses, based on
he position of their cell bodies along the ependymal wall, the
rojection of their basal processes, and their gene expression pat-
ern (Rodriguez et al., 2005). �1 and �2 tanycytes are found along
he ependymal surface of the ventromedial and arcuate nuclei,
espectively. Their basal processes extend into the hypothalamic
pendyma and form direct contacts with blood vessels and also,
ossibly, neurons. The �1 tanycytes, on the other hand, line the

ateral portion of the infundibular recess, extend basal processes
s far as the lateral edge of the ME,  and form direct contacts
ith endothelial cells and close associations with the terminals of
nRH-expressing neurons. Finally, �2 tanycytes are found along

he ventral surface of the infundibular recess and extend to the
entral surface of the ME,  terminating on blood vessels of the portal
irculation.

Tanycytes express a variety of markers characteristic of neu-
al stem and progenitor cells (Table 1; Rodriguez et al., 2005),
ith �2 tanycytes expressing higher levels of some of these mark-

rs, such as Hes1 and Hes5 (Lee et al., 2012). �2 tanycytes have
een directly shown to proliferate substantially at the floor of the
hird ventricle within the ME  in a region termed the hypotha-
amic proliferative zone (HPZ) (Fig. 2; Lee et al., 2012). The rate
f proliferation in the HPZ remains relatively high well into the
ourth week of life, but declines substantially into adulthood (Lee
t al., 2012). This is consistent with temporal changes in ME  neu-
ogenesis, which is substantially higher in the first few postnatal
eeks than in adult animals (Lee et al., 2012). Lineage analysis
sing genetic fate mapping revealed that HPZ �2 tanycytes are the
ell of origin of newborn neurons in the ME,  and that �2 tanycytes
re substantially more neurogenic than other tanycyte subtypes
Lee et al., 2012). Furthermore, these data demonstrate that tany-
ytes function as neural progenitors at significant levels in the ME,
ut not in other regions of the hypothalamus in vivo (Lee et al.,
012). In contrast, BrdU-labeled neurons found in the hypothala-
ic  parenchyma, many at considerable distance from the ventricles

Migaud et al., 2010), may  be generated from an as yet uncharac-
erized neural progenitor population.

The ME,  like other canonical neurogenic niches, is heavily vascu-
Please cite this article in press as: Lee, D.A., Blackshaw, S., Functional im
brain. Int. J. Dev. Neurosci. (2012), http://dx.doi.org/10.1016/j.ijdevne

arized. Endothelial cells play an essential role in regulating neural
rogenitor proliferation in the adult SVZ (Shen et al., 2008; Tavazoie
t al., 2008), and raises the possibility that the unique vascular envi-
onment of the ME  with fenestrated capillaries and fractones that
, GFAP, �-crystallin, Ttyh1, Cspg2, Sox2 Vimentin, Nnat, Ddr1, Mak

often contact tanycytes (Mercier et al., 2003; Wittkowski, 1998), 

may  play an active role in the neurogenic potential of �2 tanycytes. 

These structural similarities to the “neurogenic niche” environment 

found in the SVZ and SGZ suggest that the hypothalamic ME  (HPZ) 

also serves as a neurogenic niche and warrants further attention 

towards obtaining a more detailed understanding of the contribu- 

tion of HPZ-derived neurons to physiology and behavior.
While providing substantial insight into the identity of one pop-

ulation of hypothalamic neural progenitors, the study by Lee et al. 

(2012),  raises several questions. What environmental conditions
and/or molecular mechanisms regulate hypothalamic neurogen- 

esis? Is ME  neurogenesis limited to postnatal and young adult
timepoints? Moreover, what is the turnover of the newborn neu- 

rons in the postnatal and adult ages? Do adult born ME  neurons 

migrate? Finally, what is the cellular identity of other neural 

progenitor populations in the hypothalamus, and does a dedi- 

cated progenitor subtype exist in the hypothalamic parenchyma? 

Answering these questions will lead to a better understanding to 

the temporal window that these tanycytic neural progenitors can 

exert their plasticity onto existing hypothalamic circuitry. 

4. Functional significance of adult hypothalamic
neurogenesis 

Another central unresolved question is the functional signifi- 

cance of postnatal hypothalamic neurogenesis. As expected from 

its relatively recent discovery, functional studies of neurogenesis in 

the adult hypothalamus are still in early exploratory stages. Given 

the role of the hypothalamus in feeding and metabolism, there has 
plications of hypothalamic neurogenesis in the adult mammalian
u.2012.07.003

third ventricle within the ME  in a region termed the hypothalamic proliferative zone
(HPZ) (cross-hatching). The HPZ serves as a dedicated neurogenic niche within the
ventral hypothalamic ventricular zone (HPZ). (b) HPZ tanycytes have been observed
to generate astrocytes, neurons, and may  generate oligodendrocyte precursor cells
(OPCs).

dx.doi.org/10.1016/j.ijdevneu.2012.07.003
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he anti-mitotic drug cytosine-b-d-arabinofuranoside (AraC) into
he lateral ventricles blocked cell proliferation in the hypothala-

us  and reversed CNTF-induced weight loss. While these results
uggest a possible role for hypothalamic neurogenesis in weight
egulation, the fact that AraC blocks all cell proliferation through-
ut the brain leaves open the question of whether these effects are
ctually mediated by inhibition of hypothalamic neurogenesis.

Other studies have explicitly suggested a role for hypothala-
ic  neurogenesis in energy regulation. New postnatal and adult

orn hypothalamic neurons express pSTAT3, a marker for func-
ional activity, following leptin treatment (Lee et al., 2012; Kokoeva
t al., 2005; Pierce and Xu, 2010). Furthermore, markers of ter-
inally differentiated hypothalamic neuronal subtypes, such as

gouti-related peptide (AGRP), pro-opiomelanocortin (POMC) and
europeptide Y (NPY) are expressed in these newly formed cells
Lee et al., 2012; Pierce and Xu, 2010; Kokoeva et al., 2005), sug-
esting that they may  alter the metabolic homeostat through the
elease of neuropeptides, or by direct integration into local neural
ircuitry.

Upregulation of ME  neurogenesis in response to HFD contin-
es into adulthood (Lee et al., 2012), which raised the possibility
hat this process might also modulate hypothalamic neural cir-
uitry late in life. Previous studies have implied that ongoing cell
roliferation plays an important role in regulating feeding and
etabolism (Pierce and Xu, 2010; Kokoeva et al., 2005). Whole

rain X-irradiation leads to long-lasting changes in body weight
d’Avella et al., 1994), an effect which is not mimicked by focal
rradiation of the hippocampus (Tan et al., 2011). In contrast, focal
rradiation targeted to the HPZ, which selectively inhibits adult
eurogenesis in the ME  of HFD-fed animals, results in significant
ttenuation in weight gain and higher levels of activity and basal
etabolism relative to controls (Lee et al., 2012). Furthermore,

evels of observed adult neurogenesis (Hu+BrdU+DAPI+/Hu+DAPI+

eurons) in the arcuate nucleus were 0.75 ± 0.09% in sham treated
ice versus 1.07 ± 0.11% in irradiated mice (mean ± standard error
ean; p = 0.052; n = 3), thus suggesting that irradiation was not

nhibiting neurogenesis within the adjacent arcuate nucleus, a
ypothalamic substructure known to regulate feeding (Lee et al.,
012). This suggests that ME  neurogenesis induced by overfeeding
cts to reduce baseline energy consumption and promote energy
torage in the form of fat. Such a response is likely adaptive in
ild animals for which rich food sources are rare, but may  prove
aladaptive in laboratory housed mice (Blakemore and Froguel,

008; Prentice et al., 2008). These findings raise the question of
hether dietary triggers other than high-fat chow can regulate ME
eurogenesis, and whether this effect is observed in humans.

An important caveat to the interpretation of these results (Lee
t al., 2012) is the fact that since irradiation inhibits progenitor
roliferation rather than neurogenesis per se,  it is also possible that
isrupted glia or other cell types in the ME  may  partially account for
bserved effects of irradiation. Furthermore, indirect effects, such
s low-level inflammation, may  play a role following irradiation.
lood tests measuring changes in blood cell components follow-

ng irradiation in irradiated versus sham control groups, however,
id not demonstrate a statistically significant difference between
roups, thus suggesting that irradiated mice appeared to be rel-
tively healthy compared to their sham counterparts (Lee et al.,
012; data not shown). Finally, looking forward into the near future,
he development of tanycyte-specific genetic tools to inhibit the
roliferation of tanycytic neural progenitors will provide substan-
ial clarity as to the specific role tanycytes and their progeny play
n the regulation of weight and metabolism.
Please cite this article in press as: Lee, D.A., Blackshaw, S., Functional im
brain. Int. J. Dev. Neurosci. (2012), http://dx.doi.org/10.1016/j.ijdevne

The potential significance of the HPZ neural progenitor pool
s magnified by its unique location in the ME,  which lies outside
he blood-brain barrier and receives convergent projections from

 range of neurosecretory cells. Neurons whose cell bodies reside
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in the ME  may  regulate neuroendocrine function of the pituitary, 

by serving as receptors for circulating factors that do not readily 

enter the brain. Changes in the number and connectivity of ME  neu- 

rons may  thus have a functional impact disproportionately larger 

to their absolute quantity as has been shown in other regions of the 

brain (Han et al., 2007, 2009). 

Tantalizingly, other studies aimed at studying hippocampal 

neurogenesis have also pointed to possible functions of adult 

hypothalamic neurogenesis. In a landmark study of the role of 

hippocampal neurogenesis in mediating response to antidepres- 

sants (Santarelli et al., 2003), the authors used X-irradiation 

on a vertically restricted region of mouse brain containing the 

hippocampus, and demonstrated both an inhibition of hippocam- 

pal neurogenesis and mitigation of behavioral effects following 

the administration of two classes of antidepressants. While the 

attenuated response to antidepressants observed in this study
has generally been interpreted as resulting from inhibition of
hippocampal neurogenesis, the irradiated column of tissue also
includes the hypothalamus, and it is plausible that disruption of 

hypothalamic neurogenesis may  in whole or in part account for
the observed effects, particularly given the critical role of dis- 

ruptions of the hypothalamic-pituitary-adrenal (HPA) axis in the 

pathogenesis of depression. Many studies have tried to provide a 

link between the upregulation of hippocampal neurogenesis fol- 

lowing anti-depressant treatment and behavioral effects, yet the 

undesirable side effects of anti-depressants (i.e. changes in weight, 

thirst, sleep, and sexual function) all involve disruption of home- 

ostatic behaviors that are regulated by the hypothalamus. These 

antidepressant and behavioral studies suggest a possible role for 

hypothalamic neurogenesis in mood and behavior. 

Environmental, social, hormonal, and behavioral signals may  

also regulate adult hypothalamic neurogenesis. Hippocampal neu- 

rogenesis can be altered by various hormones (Tanapat et al., 1998; 

Shingo et al., 2003), social behaviors (Fowler et al., 2002), enriched 

environments (Kempermann et al., 1998; van Praag et al., 1999), 

exercise (Kempermann et al., 1998; van Praag et al., 1999), and 

stress (Mirescu and Gould, 2006), all of which engage hypothalamic 

neural circuitry. Other studies have more directly demonstrated 

hormonal and behavioral-induced changes in hypothalamic neu- 

rogenesis. One study showed that BrdU+ neurons are generated 

during puberty in mice a sexually dimorphic manner in the ante- 

rior hypothalamus and preoptic area, as well as the amygdala, and 

that this difference was  dependent on gonad hormones (Ahmed 

et al., 2008). Other work has reported social isolation has also been 

reported to modulate hypothalamic neurogenesis in prairie voles 

(Lieberwirth et al., 2012). The development of improved radio- 

logical tools (Lee et al., 2012; Ford et al., 2011), opotogenetics, 

and Cre/lox technology should facilitate the investigation of adult 

hypothalamic neurogenesis. Combined with targeted behavioral, 

metabolic, and physiological tests, these future studies will pro- 

vide the temporal and spatial resolution to draw firm conclusions 

about the precise functional role of hypothalamic neurogenesis. 

5. Conclusions 

This mini-review sought to summarize recent research on 

hypothalamic neurogenesis into the following two topics: poten- 

tial sources of hypothalamic neurogenesis, as well as the functional 

role that hypothalamic neurogenesis plays in the postnatal mam- 

malian brain. Multiple studies have observed that neurospheres 

can be grown from postnatal hypothalamus and that BrdU incor-
plications of hypothalamic neurogenesis in the adult mammalian
u.2012.07.003

poration is observed in hypothalamic neurons, consistent with 478

the possibility that ongoing neurogenesis can occur in this brain 479

region (Pencea et al., 2001; Markakis et al., 2004; Xu et al., 2005; 480

Perez-Martin et al., 2010; Migaud et al., 2010; McNay et al., 2012). 481

dx.doi.org/10.1016/j.ijdevneu.2012.07.003
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owever, definitive evidence for ongoing postnatal hypothalamic
eurogenesis requires the identification of the stem/progenitor cell
opulation that give rise to newborn neurons, which until recently
as been lacking. The identification of �2 tanycytes as neural pro-
enitors capable of generating hypothalamic neurons in vivo should
oth facilitate studies into the functional role of adult hypothalamic
eurogenesis and spur studies aimed at identifying other neural
rogenitor population in the hypothalamus (Lee et al., 2012). In
ddition, the observation that selective inhibition of ME  neuro-
enesis alters weight and metabolism, illuminates the potential
unctional role that adult hypothalamic neurogenesis plays in the
egulation of this physiological processes. Similar to previous stud-
es involving the ablation of newborn neurons in other neurogenic
iches (Arruda-Carvalho et al., 2011; Imayoshi et al., 2008), future
tudies involving the ablation of adult born hypothalamic neurons
ill hopefully reveal more insight into the role these newborn neu-

ons play in adult physiology and homeostasis.
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